![]() Across the world, many communities are already experiencing increasing droughts due to climate change. As the global population increases, securing enough supplies of clean, safe freshwater is a critical priority and using our current resources more efficiently needs to be part of this. Since farming is one of the largest consumers of freshwater, reusing waste water within agriculture could have a significant impact, however existing techniques are limited and difficult to apply at scale. But exciting pilot studies funded through the STFC Food Network+ are already bearing fruit – quite literally – in finding an alternative approach. “The novel aspect of this project is that we are using an established technique for a purpose it has never been used for before - to purify waste water” says project lead Devendra Saroj, Head of the Centre for Environmental Health and Engineering at the University of Surrey. The main issue with using waste water from industrial sources within agriculture is the presence of contaminants which can then accumulate in plants and seeds. Devendra’s approach is based on treating waste water with pulses of electrons that will react with organic compounds and instantly degrade them. Similar electron beams are already used widely in other applications, such as the security and health sectors. “Ultimately, using electron beams could purify wastewater to a very high standard within minutes” Devendra says. This is in stark contrast to existing membrane-based purification methods which can take several hours. His initial results on wastewater samples from textiles and mixed industrial uses are already promising, with over 95% of organic compounds being removed. “This is on a par with conventional techniques but much faster” Devendra says. To assess whether this water could safely be used for agricultural purposes, the team have been testing the purified water on plants (such as lettuce and beans) grown in petri dishes. Reassuringly, the results showed little difference between tap water and the purified wastewater, with the seedlings appearing completely healthy with no growth defects. “We are now talking with companies who specialise in hydroponic growing systems, to test this water on vegetables grown commercially” says Devendra. “Since these are closed agricultural systems, these could potentially be coupled to places where waste water is generated”. Another long-term goal is to use wastewater from actual farms, for instance to purify water containing run-off from organic fertilisers. But the immediate issue is to scale-up the process, since the current bench-size prototype model is only capable of handling sizes up to a litre. This may require a fundamental shift in production processes as Devendra explains: “Most electron beam applications are for scientific uses in laboratory settings. Manufacturers will have to adapt the instruments if they are to be used mainstream”. With so many factors to consider, including cost, ease of use and electron beam concentration, these proof-of-concept results will play a key role in convincing manufacturers to take up the challenge. For Devendra, the project illustrates perfectly the STFC Food Network’s goal of catalysing new ideas through bringing different disciplines together. “I would encourage researchers to participate in the network, even if they don’t see an immediate connection to their work” he says. It was through one of the Food Network’s Sandpit events, for instance, that he met physicists who develop accelerators that create electron beams. “They hadn’t thought of using this technology in an application like water recycling but with my environmental background I saw the opportunity” Devendra says. “I enjoy actively participating in the STFC Food Network because it allows me to bring my skills and contribute to areas that I don’t have specific expertise in, such as climate change. Bringing different disciplines together allows problems to be addressed from different angles”. With particular thanks to Dr Donna Pittaway at STFC Daresbury Laboratory
0 Comments
![]() Specially-equipped drones could soon help small holder farmers control one of the deadliest killers of coffee plants. Coffee is one of the most traded agricultural commodities and has become a lifeline for many developing regions in the world. This includes the Chiang Mai region in Thailand, where the government is on a mission to become the ‘coffee capital of South-East Asia’, focusing on the premium Arabica varieties. But these ambitions could be jeopardised by a parasitic fungus. Coffee leaf rust is a global disease which attacks the leaves of coffee plants, ultimately decimating the coffee bean harvest. The fungal spores spread easily via wind and rain, meaning that a single outbreak can wipe out plantations over entire regions. Sri Lanka, for instance, was once exclusively planted with coffee until a coffee leaf rust epidemic in 1892 destroyed all of the trees, prompting the farmers to plant tea instead. With fungicides being prohibitively expensive and not an option for organically-certified farms, the only way smallholder farmers can control the parasite is to remove infected plants as soon as possible. Yet even this is currently a challenge – although this STFC-funded project could soon make the process much easier. “It’s very difficult for these farmers to monitor coffee leaf rust, because the plantations are often on the sides of rugged mountains and intercropped with different species: very different from the neat rows we have on UK farms” explains Anthony Brown (Durham University). He first became aware of the problem of coffee leaf rust when he was introduced via the STFC Food Network+ to Oliver Windram, a researcher of remote-sensing technologies for crop plants (Imperial College, London). Oliver’s earlier research in plant pathology had uncovered a real need within agriculture for methods that could quantitatively measure plant disease in the field. This led him to develop remote-sensing technologies for measuring disease on wheat and broccoli, using machine learning to detect and quantify infection. Together, Oliver and Anthony proposed an image-based detection system using drones that could easily fly over the hillsides, allowing infected plants to be identified much more quickly. This draws on Anthony’s expertise in data analytics and unmanned aerial vehicles, and is based on recording spectral data. Their method measures the wavelengths of light reflected off the surface of the plant leaves and records how the intensity of light varies as a function of frequency. The result is a ‘heatmap’ where a large difference in signal intensity indicates the presence of coffee leaf rust. The project began with field visits to coffee plantations in Thailand to test which wavelengths could most accurately discriminate between healthy and infected plants. This in itself proved an experience: “It was the first time I realised that coffee berries are actually red!” Anthony jokes. The team walked among the plants with spectroscopes to compare the signatures of reflected light from uninfected plants and those with varying degrees of coffee leaf rust. Unfortunately, the optimum wavelengths all fell within a range not covered by commercially-available cameras. “When we tried using off-the-shelf cameras, the images were just not sensitive enough to detect coffee leaf rust. But it is important that this solution is affordable for farmers, who are the ultimate end-users” says Anthony. For this reason, they are now engaging with industrial partners to develop a bespoke filter that would enable a commercial camera to read these wavelengths. Anthony and Oliver hope that by January 2020 the prototype will be ready to undertake proof-of-concept flights over plantations in Thailand. Focusing on the end-user and engaging them throughout the planning stages also made the team realise that there was another potential application for this technique. “Farmers are really keen to know exactly what varieties of Arabica coffee they have, since pure products can command better prices. But there are very few records for these areas” Anthony says. He is confident, however, that spectral imaging could distinguish between them, potentially opening up new markets for small holders. “Interacting with end-users to learn what is important for them – rather than just assuming what they need - has been one of the most rewarding aspects of this project” he says. Nevertheless, interest in this work has also had a “snowball” effect in opening up a plethora of new research opportunities for him. “Through my work for the STFC Food Network+, I have now been invited to collaborate on projects using remote sensing to understand global warming impacts on trees across Europe and Africa, besides mangrove forests in South America”. The experience has certainly made him keen to be involved with more interdisciplinary projects that combine different skill sets to create novel solutions, and credits the STFC Food Network+ for encouraging these opportunities as part of its fundamental strategy. “Applying your expertise from one field to another can take you out of your comfort zone, but also be some of the most impactful work that you do” he concludes. ![]() Air pollution has been described as one of the UK’s most severe public health challenges and also damages natural environments. One of the most concerning pollutants is ammonia: besides forming smog and particulate matter that can cause cardiovascular and respiratory disease, it also deposits excess nitrogen in habitats, which reduces biodiversity. Most (88%) of ammonia emissions originate from agriculture, particularly from manure and inorganic fertilisers. Worryingly, unlike other air pollutants such as nitrogen oxides, ammonia emissions are actually increasing and are consequently a key component of the UK Government’s 2019 Clean Air Strategy. But whilst government, industry and researchers agree this trend must be reversed, they face a key obstacle in doing so: measuring ammonia emissions remains no easy task indeed. “It is really important that we are able to accurately measure ammonia emissions from agriculture” says Daniel Gerber, of STFC Rutherford Appleton Laboratory. “At the moment, most UK studies use wind tunnels to measure ammonia emissions: these are typically 2 metres long and funnel air through a liquid acid, which is analysed later in a laboratory. Although this does work, it is slow and requires significant person power”. A physicist by training, Daniel’s work usually involves equipping space missions with highly sensitive instruments to detect radiation in outer space, rather than more ‘down to earth problems’. Indeed, Daniel wasn’t even aware of how severe the problem of ammonia emissions in the UK was until his group leader Brian Ellison (STFC RAL Space) attended a STFC Food Network+ Sandpit event in March 2018. Here he was introduced to Lizzie Sagoo from ADAS, an agricultural and environmental consultancy, who asked if his methods could be applied to measure ammonia emissions on the ground. This presented a stimulating challenge for Daniel and his colleagues: “Although our technology can detect ammonia in outer space, measuring it from earth is a completely different scenario. Since space is a vacuum, it is a benign environment for making measurements but in earth’s atmosphere you have other air particles, winds and temperature variations to contend with. We weren’t sure if it could work”. Brian and Lizzie submitted a proposal for an STFC Food Network+ Scoping Grant, to fund a project that would investigate if remote measuring of ammonia emissions was theoretically possible. This was ultimately successful and, starting at the very beginning, the team first worked out which, if any, radio frequencies could be used for detecting ammonia. Every molecule emits tiny radiowave signals, in the form of electromagnetic waves produced by charged particles within the atoms. The frequency of these waves is characteristic of the molecule’s structure; hence a specific gas can be measured by detecting the strength of its characteristic frequency signature. However, these signals can be weakened by other gases in the atmosphere, especially water vapour. This presents a compromise as Daniel explains: “Low frequency signals are less attenuated in the atmosphere but they also tend to be weaker to begin with, so are harder to detect”. Nevertheless, using models of the atmosphere and simulations, he and his colleagues identified a handful of signals that could be potentially viable. These results enabled them to secure a STFC Proof-of-Concept grant to start designing a prototype instrument. “We envisage that the instrument will be about the size of a small fridge, that could be towed into a field on a trailer or mounted on a wall” Daniel says. Crucially, it would be capable of measuring in real time, allowing it to detect any sudden surges in emissions which could then be investigated. A portable, easy-to-use instrument would also enable a much denser data map of ammonia emissions across the UK. This could ultimately help farmers make informed choices on when and how to spread manure and to assess whether current storage facilities adequately restrict emissions. These potential gains aptly illustrate the STFC Food Network+’s commitment to support projects that can deliver measurable impact towards a sustainable agricultural sector. “Without the STFC Food Network+, we would not have realised the value of an instrument to measure ammonia on the ground” Daniel says. He also stresses how important it was to interact with real people in order to truly understand what was needed. “Our conversations made us realise that ease of use and operation were more critical than using our space heritage to develop a supremely sensitive instrument. We were also able to visit a farm and see the conditions where it would be used: with dust in the air and mud everywhere, it was clear that this instrument couldn’t only be suited to a clean laboratory environment!” Besides the cognitive challenge, Daniel has enjoyed the rich experiences the project has brought. “I normally spend all day in clean offices, then suddenly I was pulling on wellies and wading through manure on farms…” he says. Despite the muck, he is keen to become involved in more interdisciplinary work. “This project has made me wonder how many other potential applications that we are not aware of could benefit from our technology… the challenge now is to connect with and meet those users.” After all, you can only begin to try and solve a problem once you know about it. It sums up the STFC Food Network+‘s ethos perfectly: bringing together those with a need with those that have a potential solution. ![]() What conditions create that ‘perfect storm’ where food prices escalate wildly, leading to riots and unrest? Risk analyst Aled Jones (Anglia Ruskin University) is applying techniques he originally used to study the origins of the universe to answer that question – and help protect our food systems from the effects of climate change. “Making our food systems resilient to climate change is not just about producing enough food, as past events have shown. There have been cases where a small food production shock has had a high effect on food availability, and others where a massive physical disruption had no impact on food accessibility. It all depends on market forces and how governments handle the situation” says Aled. As director of the Global Sustainability Institute, he is applying mathematical data processing techniques to understand how social systems interact with agricultural production to ultimately determine food accessibility. One may presume that the most important factor is our ability to produce food in the first place, but Aled argues that price is the dominant issue. “Price has a greater effect on food access than physical access, since it determines who can actually afford food. But we are really bad at knowing what influences price when there are so many factors, such as markets, speculation and currency values”. With price being so critical, it is essential to know how this responds to disruptions in food production caused by increasingly frequent extreme weather events (so-called ‘food shocks’). To investigate this, Aled collaborates with the marketing and financial sectors, and, through the foreign office, multinational retail consortia and agrochemical companies. “Insurance companies are often ahead of academia in the sense that they have a lot of data about the conditions that surround food production shocks” he says. The traditional methods used to explore how these different sectors respond to food shocks include interviewing and ‘war game’ scenarios: “Essentially this involves locking representatives from markets and government in a room for a day and seeing how they respond to a hypothetical extreme yet plausible event that affects about 10% of global food production” says Aled. However, these methods are highly subjective and don’t always correspond with real-world situations. Searching for a more rigorous approach, Aled remembered his days as a PhD cosmology student, where he used image processing techniques to study telescope data on the cosmic microwave background: the oldest electromagnetic radiation in the universe. “I realised that those techniques of categorising information could provide new insights into food price data – uncovering new patterns and causal components”. Through the STFC Food Network+, he formed partnerships with the Department of Applied Maths and Theoretical Physics at the University of Cambridge and the UK Met Office. The aim was to review a range of analytical techniques for their ability to automatically detect food price shocks within datasets. “It’s really the same thing I did in my PhD: applying maths to clean up data and search for hidden patterns within the signals.” Besides tools from the finance and insurance sectors, these techniques include those used to detect earthquakes and exploding supernova stars. As Aled explains: “Normally people look at when a production shock or food riot has happened and then try to work out what it caused or what caused it. But this can miss cases where similar conditions led to different outcomes. Our aim is to find a technique that can objectively identify when a price shock has happened, what the characteristics of a price shock are and a way of categorising them.”. Having identified a number of promising algorithms, the group are now applying these to past historic events. Ultimately, understanding the conditions and market behaviours that combine to cause food scarcity will allow governments to be proactive and set in place protective strategies. “We hope these techniques can be used to develop hypothetical future scenarios so that governments, businesses and the insurance sector can ‘stress-test’ their plans to manage food shocks” Aled says. He also hopes that it could help develop policies that link up sustainability plans at regional, national and international levels. “Local food systems minimise environmental damage and carbon footprints, but if one is lost due to drought or a flood, you need links to the global system to survive. And when conditions are good, local systems can give their surplus to provide resilience elsewhere” he explains. Aled credits the STFC Food Network+ with giving him the time and space to try a truly novel idea. “This project has allowed us to take a more objective approach than traditional methods. By looking at historic price events and categorising them, we can then work with partners who explore the impact of weather on food production or the impact of prices on people, to better inform automatic models based on those behaviours.” Meanwhile, whilst this work occupies most of his time, Aled’s original love of astronomy has been rekindled through his young sons’ interests. “I now know more names of moons and dwarf planets than I did when I was actually studying astronomy!” he jokes. It just goes to show how creative thinking and interdisciplinary partnerships can generate truly novel solutions to improve our food systems. ![]() Climate change is widely claimed to be the biggest challenge facing humankind and is already impacting farmers in some of the world’s poorest regions. Adapting to rapidly-changing weather patterns will be critical if we are to produce enough to feed the growing population. Big Data could be a key instrument to achieve this as Seb Oliver has been demonstrating with his STFC FoodNetwork+ supported project: Forecasting Agricultural Crop Yields at National scales (FACYNation). An astrophysicist at the University of Sussex, Seb is certainly comfortable with using Big Data. His particular specialism is tracking the evolution of galaxies using infra-red light captured by satellites and telescopes. More recently he has become interested in Big Data approaches for more ‘down to earth’ problems, including projects in the medical sector to coordinate patient records over time to improve diagnosis. An introduction to Met Office climate scientist (and former astrophysicist) Edward Pope during the 2018 February STFC Food Network+ Sandpit event inspired an idea to build a modelling tool that could increase the climate-resilience of food supply chains. In the near future, entire regions are projected to experience new temperature regimes, so it is vital that we can forecast how different crops would respond. “One approach would be to use our knowledge of plant biology” says Seb. “But this requires detailed physiological understanding and these forecasts may not correspond with our observations in the field”. To brainstorm new approaches, Seb organised a two-day ‘hackathon’, which brought together meteorologists, theoretical physicists, data scientists and specialists in machine learning. Ultimately, they opted for an empirical approach that converted actual data, in this case USA maize yields and meteorological records, into a model describing the relationship between maize yields, temperature and precipitation. This used a Bayesian modelling technique, originally applied by Seb’s postdoc Peter Hurley to solve astronomy challenges. “A key advantage is that this model is based on actual observations, hence no detailed knowledge of physiology is required” Seb says. “It is also more useful than simple correlation methods since these are only really accurate for slight variations, rather than completely different scenarios.” Another advantage is that the Bayesian approach allows further variables to be added easily, such as soil conditions or pollution levels. Having demonstrated proof-of-concept with maize grown in the USA, Seb and the team are keen to develop the model for different crops, countries and varieties. “We are also investigating new sources of data, for instance earth-observation photographs to quantify yields from banana plantations” Seb says. Ultimately, he hopes the model will become a freely-available, open-source platform that researchers around the world can develop and contribute to. Since the model’s algorithms don’t require super-computers, farmers in developing countries could particularly benefit from it. Nevertheless, for the next stage he is focusing closer to home by developing a model for UK wheat breeders. Currently, new varieties of wheat are trialled by growing them at specific test sites and measuring the average yield over five years. However, the results at these sites may not reflect the variation that would be seen if the crop were planted over the whole UK. Through an extension grant from the Food Network+, Seb is now helping to develop SIMfarm 2030: a model that can use the initial test results to predict how new varieties would perform across the whole UK. This is being led by plant physiologist Jake Bishop (University of Reading), who specialises in how crops are affected by stressful weather conditions. Potentially, SIMfarm 2030 could hypothesize the best-suited varieties for different climate-change scenarios. “This project came from the success of FACYNation and builds on the Met Office’s “food and farming” research programme sponsored by the Government’s Department for Food, Environment and Rural Affairs” Seb says. Throughout this work, collaboration has been – and continues to be- a strong theme, engaging researchers across disciplines, from PhD students to Professors. Having convened interdisciplinary meetings in the past to investigate how to apply data science to global challenges, Seb appreciates the strategic role of networks such as the Food Network+. “Events like the STFC Food Network+ Sandpits are so important because bringing people together is key” Seb says. “As data scientists, we have valuable tools to offer but we don’t necessarily know where the problems are”. Seb also credits the Food Network+ for supporting a sector of the knowledge-transfer chain that can struggle to attract funding. “Taking knowledge and theory to the next level of practical application can be challenging” says Seb. “But having proof of principle gives us a stronger case to take to investors and stakeholders”. Outside work, Seb’s fascination with models continues. “I like to play board games, especially strategy games such as ‘Ticket to Ride’ and ‘Pandemic’ he says. But I am always trying to work out the mathematics of the game!” No doubt, it won’t be long before the real world presents another challenge for him to get his teeth into… ![]() We’d all like to trust that the ingredients of our food products match their labels but unfortunately food adulteration – where certain ingredients are substituted for cheaper, indistinguishable alternatives – is rampant within the industry. Although such products can be identified using high-spec laboratory equipment, there is an urgent need for a portable and cheap detection system on the front line - a problem Paul Richardson has been addressing with the wider STFC Food Network+. “The adulterated products that are caught are currently only the tip of the iceberg – we have no idea how much is circulating undetected” says Paul, whose interest in the issue began with his Master’s degree project which investigated whether spectroscopic methods could detect adulterated coconut water. Proclaimed as a natural ‘superfood’ with a wealth of health benefits, coconut water sales have rocketed over recent years. But severe allergic reactions and even deaths have resulted from counterfeit products containing undeclared cow’s milk, often used to improve the product’s appearance. For his Master’s project, Paul demonstrated that contaminated coconut water could be detected using Raman scattering, which irradiates samples with a laser beam and measures the pattern of scattered light. Depending on the types of atoms, some of the scattered light undergoes an energy change, causing the wavelength to shift. Examining the scattering spectrum produces a distinct ‘fingerprint’ that can be used to work out the molecular composition. Whilst this works well in the lab on carefully-prepared samples, conventional Raman can’t be used on drinks still in the original packaging, which slows down the testing procedure. As Paul explains, “Conventional Raman only measures the scattering directly at the incident spot, meaning that surface scattering completely overpowers deeper signals. The only way to increase depth is to build a more powerful laser which would damage the sample”. At the STFC Food Network+ Sandpit event in February 2018, Paul’s supervisor Roy Goodacre (Formerly University of Manchester - now University of Liverpool) joined forces with Pavel Matousek (STFC Central Laser Facility) to pitch the idea for a project investigating a new technique for through-container detection: Spatially Offset Raman Spectroscopy (SORS). For Paul, it would perfectly combine his analytical skills, interest in food adulteration and thirst for research experience. “I was delighted to be able to extend this work through the STFC Scoping Project award, particularly as SORS could be a very valuable detection technology within food systems” Paul says. SORS is based on the principle that deeper scattering is more likely to be detected at a spatial offset from the incident laser. Measurements are made at both the incident spot (to get the surface measurement) and at the offset (where more deeply penetrated signals are stronger than the surface), then statistical methods used to subtract the surface signal. Crucially, this allows greater penetration to be achieved without a stronger laser. This time Paul turned his attention to adulterated fruit juices. Since pure products command a considerably higher ‘premium’ price tag, easy money can be made by substituting fruit sugars for high-fructose corn syrup. To see whether SORS can detect this, Paul prepared a range of fresh fruit juices adulterated with different amounts of syrup, but with the same total sugar concentration. Keeping things as realistic as possible, Paul tested the solutions in packaging from supermarket-bought products but immediately hit a problem. “We found that Tetra Pak and wax cartons completely stop the laser from getting through” he says. “It’s unfortunate since the vast majority of fruit juice products come in such packaging”. Undeterred, Paul persevered using transparent glass and plastic bottles, which admit laser light, and demonstrated that SORS does have potential for a portable system. “The proof of concept is absolutely there, all we need to do is tweak it” Paul says. “At the moment, there is still some noise from the outer packaging but our group are working on mathematical approaches to subtract this from the final signal”. Although fruit juices may be out at present, an alternative avenue for portable SORS could be the bottled oil market, since these frequently come in glass or clear plastic containers. “There is certainly a need since hazelnut oil is often used in place of more expensive oils, putting people with nut allergies at serious risk” he says. “I’m very proud to be part of the SFN, particularly because as a group it is pushing forward to make the world a better place, working together with companies and industrial partners” says Paul. He particularly attributes it to helping him gain a thorough understanding of the academic world, including forming collaborations, sourcing funding and ‘learning about science I didn’t even imagine existed!” An enthusiastic cook, he has enjoyed learning how his technical skills can be applied to improve food systems for the future. “As an analytical chemist, it would be strange for me to not be interested in food: the kitchen is basically a tasting laboratory and one that deserves honest ingredients” he concludes. ![]() A novel project combines drone technology, space science and reproductive biology to detect when cows are ready to be inseminated. Led by Niamh Forde, University of Leeds. If you’re a dairy farmer, one of your biggest concerns is making sure your herd gets pregnant on time. Dairy cows only produce milk following successful calving, but there is a narrow window of time when a farmer needs an animal to become pregnant. Missing these opportunities can quickly generate losses of hundreds of pounds per cow, due to disrupted milk production and having to pay for multiple rounds of artificial insemination. Consequently, dairy farmers have to be on the lookout for when animals display ‘heat’: behavioural and physiological signs that cows show just before ovulation. “Sometimes if you go out early in the morning, you can literally see the steam rising off the cows that are in heat, hence the name” says Niamh. “Unfortunately, most of the time the signs of heat are much more subtle and can be very difficult to see”. Current detection methods are far from perfect and can be very time consuming, for example observing mounting behaviour in a group of females. Given that a typical dairy herd can be over a hundred-strong, the need for a quick, accurate and affordable solution is clear. It seems a problem made for Niamh, who has studied the molecular and physiological events of early pregnancy in a wide range of animals including pigs, cattle, mice, humans and even marsupials. But she arrived at her solution purely by chance. After a colleague couldn’t attend the STFC Food Network Sandpit event in February 2018, Niamh went in their place and “got chatting to the people on my table while charging up my laptop.” One of them was Stephen Serjeant, based at the Open University who designs algorithms to analyse temperature differences in distant galaxies. “I thought ‘If you can measure temperatures in galaxies so far away, then perhaps we could use it to detect heat in cows!’” she says. On finding that her other neighbour, Anthony Brown (Durham University) was an expert in drones, everything suddenly came together. The basic idea is to scale down Stephen’s pattern-recognition algorithms to detect the distinct temperature changes in individual cows during heat. Once perfected, they hope to combine the program with drones fitted with infra-red imaging devices that can sweep across herds while they are out at pasture. A truly interdisciplinary project, it requires the expertise from all three researchers to be successful. Currently, they are demonstrating proof of concept using a static device mounted indoors. “We still need to work out how many data points we need for each individual cow so that we can accurately detect signs of heat” says Niamh. “This is where Stephen’s skills really come into their own”. Once optimised, they intend to move to using drones to conduct an outdoor experiment later this year with a herd of dairy cows synchronised to ovulate at a specific time. “This should give us a baseline set of data that we can use to refine the algorithm so that we get consistent outcomes” Niamh says. A particular benefit about this technique is that it can be applied to farms with very different management systems, from small cooperatives in Sub-Saharan Africa to a high-end operation in the UK or USA. “Speaking to farmers has shown me that they are generally keen to use methods that are based on a physiological process, as it’s something they see occurring in their animals and understand”. If successful, Niamh envisages that this method could easily be applied to other areas, including reproductive management in conservation parks and zoos. It’s been quite a journey for a self-confessed city girl: “My family think it’s hilarious that I now work with the farming industry as I grew up slap-bang in the middle of Galway city on the Irish west coast” Niamh says. Niamh moved to Leeds to start her own lab three years ago and since then has said that being part of the STFC Food Network+ proved invaluable in helping her to integrate into the food-science community. “The Food Network+ has allowed me to interact with people I wouldn’t necessarily have met otherwise, such as Stephen and Anthony, and made what I thought were ‘really difficult’ sciences such as astrophysics more accessible. It gives me the confidence to ask ‘stupid questions’ which often spark new ways of thinking about my own research”. It is a fitting illustration of how the network creates opportunities for researchers from very different disciplines to design novel solutions towards more sustainable food systems. For Niamh, it’s been a very rewarding collaboration. “Reproductive biology is what I’m super-interested in and it’s been wonderful to use my fundamental knowledge towards helping farmers make a better living” she concludes. “The uterus is just the most awesome organ!” ![]() “We’re working to address a critical knowledge gap challenge in the agricultural sector so that data-driven approaches can be used to enhance agricultural sustainability and productivity in China”. As Professor of Supply Chain Management at the University of Roehampton, Wantao Yu has a vision to see a Big Data revolution transform the agri-food sector. Blockchain, Big Data and Internet of Things (IoT) technologies are being hailed as a game-changer for supply chains. Many of these systems are based on using online ledgers and databases to record transactions so that information can be accessed instantly (but not changed) by every member of the chain. The potential benefits for the food sector range from increasing transparency, guaranteeing province of origin, helping enforce environmental and food safety regulations and allowing farmers to access the best markets for their goods. But many places face grand challenges in implementing digital technologies (e.g., IoT, blockchain and big data) in agricultural supply chains, particularly in rural regions of China, such as Henan Province. “In the news we hear that big progress has been made in China over the past 20 years but this has really been concentrated in major cities” Wantao says. “In the western and central regions like Henan Province, most farmers work only on a small scale and are currently experiencing multiple problems” including environmental pollution, mass-migration to urban cities and increasing concerns over food safety. Not surprisingly promoting digital technologies can be “a hard sell” as Wantao says: “Most farmers earn such a low income that their sole focus is on making more profit. Besides this, the average age of a rural farmer in Henan Province is between 50 and 60, so there is a huge knowledge gap when it comes to new technologies”. Working with the STFC Food Network+, Wantao hopes to overcome this gap and deliver these technologies directly to those who could benefit. Working closely with Dr Tom Kirkham and Mr Tom Collingwood, IoT and Blockchain specialists at STFC Hartree Centre, Wantao has organised one workshop in Henan Province, China and another workshop in London, to discuss the potential applications of digital technologies in agricultural value chains. One of the reasons why he chose to focus first on Henan Province is that this is the official ‘breadbasket of China’, producing most of the country’s wheat and maize and containing over 50 million smallholder farmers. Crucially, Wantao has also already established a strong relationship with Henan University and Henan Agricultural University which deliver training programmes for farmers through its education centre (e.g. Science and Technology Backyard in Henan Province). In Wantao’s view, involving farmers from the start through workshops and focus groups will be key to delivering resources that they can understand and use. “We hope the farmers themselves will become the ambassadors” he says. In collaboration with Henan University and Science and Technology Backyard managed by Henan Agricultural University, he plans to use a whole range of media to facilitate this dissemination including leaflets, videos, brochures, posters, TV, newspapers and social media. Wantao is also using his connections to encourage actors further up the food-supply chain to embrace digital technologies (e.g., IoT, big data and blockchain). It is currently a challenge for large-scale producers to coordinate supplies originating from widely distributed smallholder farms. Furthermore, this makes it difficult to work out the optimum growing regimes for high yields and ensuring good quality. Using IoT devices, including mobile apps, could make it easier for farmers to record and share information that could include fertiliser use, irrigation and pest control. Wantao has already secured the interest of Xinqi Garlic Agriculture Technology Co., Ltd., one of the key players in the local garlic sector, who hope to develop an online database and platform to link up all their suppliers and relevant value chain actors. This could provide a pivotal example of how IoT and Big Data can be used throughout the entire supply chain. Policy makers also stand to benefit as these technologies could help ensure farmers are abiding by food safety and environmental regulations. “There is great urgency to reduce fertilizer usage, pesticide use, water consumption and pollution in the agricultural sector in China.” Wantao says. It’s thought that Blockchain could be particularly effective in managing food safety outbreaks, as all the relevant data will be instantly accessible without the need to retrieve information via third parties. This could allow sources of contamination to be traced in seconds, rather than weeks. Blockchain technology could also support farmers in making accurate decisions for sustainable production through providing data about soil conditions, water needs, fertilizer requirements, or weather forecasts. “Most rural Chinese farmers believe that more fertiliser is always better” says Wantao, “but having access to this data could help them to use just the right amount needed for maximum yields”. Clearly with his vision, connections and passion for digital technologies, Wantao is in a unique position to move these technologies from theoretical possibilities to actual solutions. But he is realistic about the challenge that he faces, saying “We don’t have any successful examples at the moment of using Big Data and Blockchain in agricultural value chains in China. Hopefully this collaboration could establish a case-study and best practices for wider dissemination”. Whatever the result, it is clear that his work has already promoted a new wave of international collaboration between the UK and China and encouraged exciting innovations in the agri-food sector. ![]() STFC HARWELL CAMPUS, 17-18TH JANUARY 2019 The 2019 STFC Food Network+ Showcase started with an insightful introduction to 21st Century Challenges from Professor Grahame Blair (STFC Executive Director, Programmes Directorate), setting the scene for the contribution that the SFN and STFC as a whole have made in this research area. This lead nicely into a rousing call to arms delivered by Professor of Population Dynamics Tim Benton (University of Leeds): “Our current food system is failing and inefficient, with the associated health and environmental costs being 5 to 10 times greater than the agricultural value of our food”. Describing the sheer complexity of the problem, and the daunting challenge of adapting to climate change, such an opening talk could have cast a pessimistic gloom across the meeting. But Tim wrapped up with an inspiring vision for how a positive future food system could look, including enthusiasm for the important role technology can play. Throughout the two days it was clear that the members of the STFC Food Network+ are using such challenges as inspiration for finding solutions through creative collaborations, new ways of using technology and rethinking entire supply chains. We had come together to hear about the results achieved so far by the 20 projects funded in the 2018 STFC Food Network+ Collaborative Scoping Call. Although these covered everything from avocados to arsenic poisoning, there were noticeable themes uniting them together. One of these was the potential for Big Data and Internet of Things technologies to revolutionise the food system. We heard how the possibilities for these technologies are as varied as they are exciting, and applicable at both ends of food supply chains, for instance in determining the exact amount of fertiliser to apply or redistributing surplus food products. But as Guy Poppy (Chief Scientific Advisor to the Food Standards Agency, FSA) pointed out: “Data has no value unless it can be turned into wisdom”. Without identifying the metrics that are actually relevant to the user, one is simply left with a meaningless ocean of information. Many STFC Food Network+ projects are addressing this, ultimately helping Big Data technologies to make the leap from theoretical possibilities to effective solutions that, as one researcher put it, ‘bring benefits that result in cold, hard cash for farmers’ and other players in the food sector. Working together with all the stakeholders in the agri-food sector was another common thread between these projects. Clearly, the most effective solutions can’t be developed in isolation from those who need them. Wantao Yu (University of Roehampton), for instance, is leading focus groups in Henan Province, China, to work out how Big Data technologies could best be applied to connect rural small holder farmers to agri-businesses. Similarly, Sonal Choudhary (University of Sheffield) convened multi-stakeholder workshops in India to identify the critical problems that cause up to 40% of fresh fruit and vegetables to be lost as food waste in this region. “We identified four key areas that could have immediate impact on farmer’s incomes if we targeted them” she said. “We found that connectivity, not productivity, is the main problem”. For those who worry about Big Data technologies usurping jobs and livelihoods, the ultimate aim for all these projects was rather to empower farmers and other actors in food supply chains to make better decisions. Examples included using weather-pattern data to decide which crops to plant (the FACYNation Project, Seb Oliver, University of Sussex); helping farmers to non-invasively detect pregnancy in cows (Niamh Forde, University of Leeds), and identifying potential avenues to redistribute surplus food (the APROV project, Luciano Batista, Aston Business School). Besides digital technologies, we learnt how an impressive array of other sophisticated techniques are addressing specific industrial problems. Once again, these involved close collaboration with end users to deliver outcomes fit for purpose. After all, a technique may provide accurate, comprehensive information but it won’t be taken up within the industry if it needs hours to run, technical training and expensive equipment. We heard, for instance, how X-ray imaging can detect arsenic levels in rice grains (Manoj Menon, University of Sheffield); the potential of Raman scattering to single out adulterated fruit juices (Paul Richardson, The University of Manchester) and the use of volatile organic compounds to non-invasively ‘sniff out’ poor quality avocados and the freshness of bagged salads ( Marcin Glowacz, Natural Resources Institute, University of Greenwich and Hilary Rogers, Cardiff University). Excitingly, some projects are already at the stage of developing portable prototypes ready for use. ![]() In between the presentations, there was a constant hum of discussion, catching up with friends, making new acquaintances and discussing new ideas and proposals to follow up. This, alongside the impressive portfolio of projects, underscores how valuable the STFC Food Network+ is as a forum for generating novel solutions and connecting up the expertise, funding and world-class facilities to make them happen. Representatives from various organisations, including DEFRA, FSA, BBSRC, NERC, STFC and InnovateUK , were on hand throughout to present their current opportunities for funding, making the search for ‘that perfect grant’ considerably easier. We also had the chance to visit some of the impressive STFC facilities on the Harwell Campus, including the Diamond Synchrotron (capable of accelerating electrons to near-light speeds) and the RAL Space Centre. Watching a space satellite being tested in near-space conditions was a fitting reminder of just what science can achieve when we work together and reach for the stars. Rethinking the food system is perhaps just as great a challenge as launching into space… but the creativity and innovation found in the STFC Food Network+ is a real cause for optimism. You can now access all of the presentations from the event here (With thanks to Caroline Wood, University of Sheffield author of this blog post) ![]() From rocket launchers to rocket salads, Geraint Morgan (based at The Open University) is always on the lookout for a challenge – and the SFN were happy to oblige! Cancer detection, sports anti-doping, luxury fragrances, submarine air monitoring and space missions: Geraint’s work has embraced a staggering array of fields. The common thread linking them all is his expertise in Gas Chromatography-Mass Spectrometry (GC-MS): a sophisticated technique for separating and identifying the different chemical compounds in samples. As Geraint explains; “Everything produces a unique smell- a distinct profile of volatile organic compounds”. Having trained as an analytical chemist, Geraint’s research career started by investigating how GC-MS ‘fingerprints’ of stable isotopes could model global sources of methane and their respective roles in climate change. He then turned his attention from Earth’s systems to more distant realms, joining the teams behind two space missions. The first of these concerned the Rosetta Lander, Philae, and resulted in a miniature GC-MS system called Ptolemy which successfully analysed the chemical composition of the comet Philae landed on. Later, Geraint developed a similar system for the Mars Lander Beagle 2 to analyse rock samples for organic samples indicative of past life. Sadly, communication was lost with Beagle 2 after it landed, however the missions gave Geraint a suite of capabilities and a network of contacts ideal for problem solving back on Earth. “Having a planetary science background gives you a diverse skill set, besides the experience of working as part of a multidisciplinary team including chemists, physicists, mechanical and software engineers, geologists and microbiologists” he says. Looking for a new challenge, he attended an SFN workshop at Rothamsted Research recommended to him by Stephen Serjeant, the SFN Champion for STFC Technology. Here he found no end of potential avenues for his specialist expertise. “My first SFN workshop alone resulted in two successful projects, besides half a dozen potential new partnerships in a range of areas from chickens to blackfly larvae to Scotch whisky” he says. Both these projects address one of the biggest challenges in the food retail sector: food waste. According to the UK waste advisory body WRAP, 1,200,000 tonnes of fresh fruit and vegetables are needlessly wasted each year. At the workshop Geraint and his colleague Simon Sheridan met Hilary Rogers (Cardiff University) and in turn her colleague, Carsten Müller, who were working on reducing waste from bagged rocket salads. Using GC-MS technology, they had already demonstrated that cut leaves have a distinct molecular fingerprint that can be used to predict shelf life. However, this required expensive, bulky laboratory equipment: the challenge now was to develop a portable device that could be easily used throughout the value chain. Geraint and’s Simon work on the space missions proved ideal training: “The space community is very good at thinking outside the box and making things that are small, robust, built to survive and that don’t require a mains plug!” he says. Having demonstrated proof of principle for the device, they are now at the stage of considering applying for follow-on investment funding. The second project concerns the avocado industry, growing at a phenomenal rate but with a high level of associated waste. “Although they may look fine on the surface, one in five avocados develops disorders in the flesh, for instance browning and/or fungal decay, causing most people to throw them straight into the bin” says Geraint. Working with Marcin Glowacz, (Natural Resources Institute/University of Greenwich) Geraint and his colleague Simona Nicoara are developing a system to non-invasively ‘sniff out’ these blemished beauties at importers and ripeners, i.e. before they are sent to the retailers. Currently they are trapping organic compounds released by avocados then analysing them with GC-MS to see if there is a distinct fingerprint that can differentiate browned specimens. As with the rocket salad, the challenge will then be to develop this into a tool that can be easily used by the supply chain. “Ultimately, we aim to enable importers in the UK to ensure that only good quality avocados enter the UK fresh produce market, while transferring the poor-quality fruit into other industries, so that they can be converted to other products, such as oil.” Rather than slowing down, Geraint’s workload only seems to accelerate and expand into new fields. One of his latest projects is a medical diagnostic device to detect the bacteria that cause stomach cancer, one of the biggest killers in India. “It’s amazing to think that the same analysis methods we performed to look for signs of life on Mars are now being used to potentially save millions of lives here on Earth– a nice legacy from the mission”. Having made quite a leap from space missions, Geraint recognises the role that networks played in making this lateral move: “These networks such as the SFN function very well in bringing different people together so we can see how our technologies could potentially offer a new solution for the community. I get such a thrill from tailoring a new product to be exactly the right thing for the end user”. No doubt it won’t be long before he is ‘sniffing out’ the next challenge! (With thanks to Caroline Wood, University of Sheffield author of this blog post) |
AuthorDecember 2020 - Caroline Wood, University of Sheffield Archives
December 2020
Categories |