Scientific Computing Department

- ~180 Staff between RAL and DL

- Software engineering expertise
 - Data management systems
 - Visualisation and analytics
 - Applied maths
 - CoSEC: Computational Science Centre
 - CCPs in Physics, Chemistry, Biology, Engineering

- Systems hosting and management
 - GRID-PP Tier 1
 - JASMIN
 - Facilities Computing (Data Archive, SCARF Compute cluster)
Our Science Communities

- Life Sciences
- Environment
- Astronomy
- Materials Sciences
- JASMIN
- CERN
- Fundamental Physics
- ISIS

And wider research communities
JASMIN

Urgency to provide better environmental predictions
• HPC for higher-resolution models
But…
• Massive data requirement: observational data transfer, storage, output, post-processing

- 16 PB Fast Storage
 (Panasas, many Tbit/s bandwidth)
- 1 PB Bulk Storage
- Elastic Tape
- 4000 cores: half deployed as hypervisors, half as the “Lotus” batch cluster.
- Some high memory nodes, a range, bottom heavy.
Safe Data, Big Data, Open Data

• Data storage and management
 – Petabyte data store
• Integrated data management pipelines for data handling
 – From data acquisition to storage
• A Catalogue of Experimental Data
 – Metadata as Middleware
 – Automated metadata capture
• Providing access to the user
 – Integrated into Analysis frameworks
• Data archiving and Preservation
• Leading role in European data infrastructure
 – Making data FAIR

Brian Matthews

Findable Accessible Interoperable Reusable
DAFNI Construction and Delivery Programme (2017-2021)

Total Project Cost: £8M
Led by Oxford University, Constructed by STFC

Erica Yang
WefWeb

- Modelling sustainable supply of water, energy and food
 - Case studies based in Oxford, Tamar Estuary (Devon) and London
 - Stakeholders analysis and engagement, data collection, regulation landscape
- Funded by EPSRC and STFC
- Glasgow, Cambridge, Exeter, Newcastle and Oxford, UCL, ICSTM, Rothamsted Research

- Agent: an autonomous system with certain intensities of Water, Energy and Food ingest, production, consumption, loss and supply.
 - Strong favour towards balance-based modelling, compared to impact-based ones
 - Resulted model should suit computer simulation or real data analysis, or a mixture

Simon Lambert, Vasily Bunakov

https://www.gla.ac.uk/research/az/wefwebs/
Visual Analytics and Machine Learning

- **Data Intensive Science: Hyperspectral Imaging (IMAT/ISIS neutron imaging)**
 - 3,000 energy channels (2017) -> 375 billion voxels/3D dataset
 - 10,000 energy channels (2018 onwards - planned) -> 1.25 trillion voxels/3D dataset
 - Hundreds of concurrent analysis needed for experiment steering

- **Feature extraction** from full-spectrum neutron images using Principal Component Analysis – PCA (Joe Kelleher, Genoveva Burca, NeuWave’16, UK)

- **Developed**: fast feature extraction and exploration methods based on accelerated machine learning algorithms for hyperspectral image analysis

- **Results**: optimised processing performance from hours down to minutes, critical for in-situ visual analysis and exploration

ISIS IMAT Neutron Imaging:
- Energy Selective Imaging
- Imaging-Driven Diffraction
A Centre of Expertise in Computational Science

CoSeC supports the advancement of research by:
- developing software in multiple disciplines
- providing a hub for exchanging knowledge through training and outreach
- nurturing strong collaborations among researchers

Barbara Montanari
So what can we bring?

E-Infrastructure = Data + Compute + Expertise

- **Technology**
 - Tools, expertise and infrastructure for bringing data together
 - Metadata: data sharing and integration
 - Access to compute
 - Integrated solutions
 - Bring data and compute to bear, cloud systems

- **Software**
 - Image analysis and machine learning
 - Computational science: Modelling and simulation
 - Physics, Chemistry, Biology, Engineering

- **Expertise**
 - Software Development
 - Systems integration
 - Data science
Frameworks for data management and processing

• What metadata associated with a dataset for reasoning about its applicability?
• What types of access and transferability of datasets are possible, and how can they be harnessed for data reuse?
• How can data be integrated to apply to problems?
• How data provenance models and systems can be applied?
• How do you allow access to computing resources, remotely? To end users?
• What are the best algorithms and models to apply to solve problems?